RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. FIRST SEMESTER (July – December), 2011 Mid-Semester Examination, September, 2011

Date : 12/09/2011	PHYSICS (Honours)	
Time : 11 am – 1 pm	Paper : I	Full Marks : 50

Answer all questions

1.a) Let $\overrightarrow{a_1} = (-1, 1, 1)$, $\overrightarrow{a_2} = (1, -1, 1)$, $\overrightarrow{a_3} = (1, 1, -1)$. Show that $(\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3})$ are linearly independent. Hence, obtain a set $(\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3})$ reciprocal to this set. b) Prove that a neccessary and sufficient condition that $\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \times \vec{C} = 0$, is $(\vec{A} \times \vec{C}) \times \vec{B} = 0$. 3 c) Let $\overrightarrow{r}(t)$ be a vector function of t. Show that if i) $\overrightarrow{r}(t) \times \frac{d\overrightarrow{r}}{dt} = \overrightarrow{0}$, then $\overrightarrow{r}(t)$ has a fixed direction. ii) $\overrightarrow{r}(t) \cdot \frac{d\overrightarrow{r}}{dt} = 0$, then $\overrightarrow{r}(t)$ has a fixed magnitude. 3 OR 2 1.a) Distinguish between a polar and an axial vector, giving an example of each. b) Consider two sets of vectors $(\vec{a_1}, \vec{a_2}, \vec{a_3})$ and $(\vec{b_1}, \vec{b_2}, \vec{b_3})$ such that $\vec{a_i} \cdot \vec{b_j} = \delta_{ij}$. { i, j = 1,2,3 } i) Show that the vectors of each set are non coplanar. 5 ii) Hence express the $\{b_i\}$ in terms of the set $\{a_i\}$. c) Prove from first principle that $\frac{d}{dt} \{ \overrightarrow{A}(t) \cdot \overrightarrow{B}(t) \} = \frac{\overrightarrow{dA}}{dt} \cdot \overrightarrow{B}(t) + \overrightarrow{A}(t) \cdot \frac{\overrightarrow{dB}}{dt}$. 3 2.a) Find a general solution of $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$. 3 b) Find two solutions of the differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$ assuming the solution of the form $y = \sum_{n=0}^{\infty} a_n x^n$. Calculate the Wronøskian of the solutions at x = 0 and comment on the result. 5 2 c) Assuming $(1-2xh+h^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} h^n P_n(x)$, find the value of $P_n(1)$. 3 3.a) Expand f(x) = x $0 < x < \pi$, in Fourier series. 3 b) Show that Fourier transform of the Gaussian function is a Gaussian function. 4 c) Show that $\delta(-x) = \delta(x)$. 4.a) State Fermat's principle. Using this principle establish that all rays passing through the focus of a 1 + 2parabolic mirror are rendered parallel to the axis after reflection. 3 b) Name and define the cardinal points of a thick lens. c) Find the cardinal points of a transparent sphere of a material having $\mu = 1.5$ and radius 2 cm when 4 placed in air. 2 5.a) What do you mean by chromatic aberration? 2 b) What is an achromatic optical system? 3 c) Deduce the condition of achromatism of two lenses separated by a distance. d) An object is placed at a distance 30 cm from a convex lens. The violet part of the image is at a distance 50 cm from the lens. If r.i. of the material of the lens for violet light is 1.64, determine the r.i. for the red #3 light. Assume the lateral chromatic error is 4.2 cm.